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SYNOPSIS 

A newly developed optical testing method, the digital correlation method (DCM), is discussed 
in this paper, and its use in testing of Poisson’s ratio of nonmetal, low modulus viscoelastic 
materials. DCM is a noncontact testing method and is very easy to adapt to the environment. 
It  has very bright prospects for wider applications. 0 1996 John Wiley & Sons, Inc. 

I NTRO DU CTlO N 

Poisson’s ratio, as one of basic mechanical property 
parameters of materials, is very important in many 
finite element method (FEM) calculations, and its 
precision directly affects the reliability of compu- 
tation results. There have been some mature meth- 
ods to test metal’s Poisson’s ratio, such as electric 
gauge, speckle interferometry, and holography. But 
for some viscoelastic nonmetal materials such as 
solid rocket propellant, it is very difficult to get good 
results with these methods because of their different 
mechanical characteristics from metals. Solid pro- 
pellant has a loose structure and low elastic modulus 
(only about 200 MPa) , and its surface is very dif- 
ficult to be machine-shaped to a smooth surface. So 
if the electric gauge method is adopted, the foil 
gauges will add additional stiffness to a specimen, 
which cannot be neglected. And there will be some 
gaps between foil gauge and specimen surface. These 
will greatly decrease the precision of testing. If 
speckle interferometry or holography is adopted, 
then the deformation of propellant can reach to so 
high a level that interference fringe patterns will 
become too dense to be processed, even when the 
load is quite low. In addition, experiments have to 
be done in a darkroom, so the time effects of ma- 
terials deforming also add some difficulties to double 
exposure. The volume-change method cannot be 
employed in most labs because of the complicated 
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equipment required. There are also problems in the 
newly developed method to measure propelIant’s 
Poisson’s ratio, the fringe scanning method.’ For 
instance, longitudinal and transverse strains cannot 
be measured in the same setup and high level ma- 
chine shaping of a specimen surface is required. The 
digital speckle correlation method (DCM or 
DSCM ) has very good noncontact testing charac- 
teristics, and quite simple experimental conditions 
are required: no darkroom is required and no special 
machine shaping is required to a specimen surface. 
And under many circumstances it can even be em- 
ployed in the field. DCM has been used in the mea- 
surement of plane displacement and strain. Also, 
DCM has some shortcomings; extensive calculation 
work and much calculation time are needed. Often 
it is executed on advanced or fast computers, a VAX, 
for example. These limit wider application of DCM 
to some degree. So in this paper, DCM is improved 
according to these points and is used in testing of 
solid propellant Poisson’s ratio. 

BASIC PRINCIPLES 

The essential point of DCM is to get the whole-field 
distribution of displacement and strain by studying 
the distribution of the digital gray field of the object 
before and after its deformation. The testing process 
is as follows: First, photograph two images of the 
object before and after its deformation. Then assume 
a displacement field and a strain field acting on a 
point of the object, add the displacement deviation 
to the point reacted to the displacement and strain 
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field, find the corresponding point on the deformed 
image, and calculate the correlation function value 
between the two points. Then among the many as- 
sumed fields, the real displacement and strain fields 
should make the correlation function reach the 
maximum value. 

As shown in Figure 1, object R becomes R* after 
deformation. P is an arbitrary point on R ,  and Q is 
another point near to point p on object R.  After 
deformation, P ,  Q arrive at P*, Q* on R*. The vector 
from P to P* is called the displacement vector of 
this point, written as u or u ( P )  

in which Xi, xi represent point P's position coor- 
dinate before and after deformation, respectively. 

After deformation point Q* should still be quite 
near to P* according to the continuously differen- 
tiable characteristic of a nonindividual body. The 
vector from Q to Q*, i.e., displacement of point Q is 

u(Q) = u(P) + du = u + dr-Vu ( 2 )  

or we can write it as 

au au au 
ax aY az U( Q )  u + - dx + - dy + - dz 

dv au a v  
ax aY az u ( Q )  = u + - d ~  + - dy + - d~ 

aw aw aw 
ax aY az w ( Q )  = w + -dx + - dy + - d z  ( 3 )  

As to plane problems, w = 0, and we replace dx, dy 
with A x ,  Ay ,  then eq. ( 3 )  can be written as 

au au 
ax aY 

av a v  
ax aY 

u(&) N u + - A x + - A y  

(4) u ( Q )  = v + - A X  + - Ay 

u, u ,  w in eqs. ( 3 )  and (4) are the displacements in 
the direction x, y ,  z ,  respectively. Strains can be 
expressed as follows according to the small defor- 
mation principle in elasticity theory. 

R R' 

x Z  =J 

XI *. 

Figure 1 Three-dimensional coordinate system. 

&, = auldx ,  Ey = &/ay  
&, = aw/az 

E,y = Eyx = 4 (au lay  + av/ax) 
&,, = &,, = 4 (au laz  + a w / a x )  

Eyz = c,y = + (av/az + aw/ay) (5)  

Because the gray field distribution on the object 
surface is random, we should take a subset with a 
certain size and take the average characteristics of 
all points in the subset as the characteristics of the 
center point. The subset should be big enough to 
contain enough random points, and small enough 
to make the strain in the subset uniform. So the 
displacement of every point in the subset can be 
described with the displacement of the center point 
and the strain (displacement derivative) in the 
subset. 

If an arbitrary subset on the image before defor- 
mation is given, and six parameters u, u, &/ax, du/ 
dy,  duldy,  du/dx are assumed, in which u, u are the 
displacements of the center point of the subset, then 
the position of an arbitrary point Q in the subset 
before and after deformation can be expressed as 

au au 
ax aY 

x* = x + u ( Q ) = x + u + - A X  + - Ay 

au d V  

ax aY 
y* = y + u ( Q )  = y +  u + - A X  + - A y  ( 6 )  

in which A x ,  Ay are the components in the x, y 
directions of the vector between point P and Q.  Ac- 
cording to eq. ( 6 ) ,  on the deformed image we can 
find the subset corresponding to a given undeformed 
subset (see Fig. 2 ) .  

The digital image taken from a camera is the re- 
sult of discretion of the actual gray field, and gray 
level values exist only at integral coordinate points 
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Figure 2 
of the subset and Q is an arbitrary point in the subset. 

Scheme for image subset: P is the center point 

(dimension: pixel). So the digital gray field of the 
deformed image has to be interpolated. There are 
many forms of interpolation calculation, and the 
simplest one, bilinear interpolation, is shown in 
Figure 3. Assume a point Q(  i + y , j  + x )  that is just 
among four integral pixel points P (  i, j ) ,  P (  i + 1, 
j ) ,  P ( i ,  j + I ) ,  P ( i  + 1 , j  + I ) ,  in which x ,  y are 
the fractional parts of the position coordinates, and 
0 I x < 1, 0 I y < 1, then the gray level value of 
point Q can be derived by interpolating the gray level 
values of the surrounding four points. 

Q ( i + y , j + x )  = G ( i , J ) ( l - ~ ) ( l - y )  

+ G ( i , j + l ) ( l - y ) x + G ( i + l , j ) ( l - ~ ) y  

+ G ( i  + 1 , j  + 1)xy  (7 )  

in which G ( i , j ) ,  G ( i  + l , j ) ,  G ( i , j  + l ) ,  and G ( i  
+ 1,j + 1 )  represent the gray level values of the four 
points. The two gray level fields corresponding to 
the two image subsets before and after deformation 
can be arranged as two one-dimensional arrays P1,  
P2 in a certain same form and sequence. So a two- 
dimensional correlation calculation problem can be 
simplified into a one-dimensional linear correlation 
problem. Assume X ,  Y to be two random variables, 
and in probability statistics, the correlation ratio 
between X ,  Y can be defined as 

in which E ( X ) ,  E ( Y ) ,  V ( X )  > 0, V (  Y )  > 0 are 
the averages and square deviations of X ,  Y .  

Two one-dimensional image arrays can be re- 
garded as two one-dimensional discrete random 
variables. The discrete points number is m, and m 

= (n + l ) ( n  + l ) ,  n + 1 is the length of side of the 
image subset. 

m-1 

The correlation ratio between P1 and Pz is 

P2 actually is the function of displacement and its 
derivative, so we call C the correlation function be- 
tween PI and P2. 

The simulation degree between object surface 
gray fields before and after deformation can be de- 
scribed with correlation function C .  As to a certain 
point ( x ,  y) before deformation, when we change the 
six parameters U, U ,  du ldx ,  &lay, duldy, duldx, we 
can get different correlation function values. When 
the correlation values reach a maximum value. then 

G(i+l j) G(i+ij+l) i 
.cY 

Figure 3 Bilinear interpolation of image gray field. 
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light source 

Figure 4 
tion. 

Unipeaked characteristic of correlation func- 

the displacement and derivative can be regarded as 
the actual displacement and derivative at this point. 
Measuring displacement and its derivative with 
DCM allows one to find the group of displacements 
and derivatives that can make the correlation func- 
tion reach a maximum value. It is shown by our 
experiments that the correlation function given by 
eq. (10) is most sensitive to the changes of u, u, and 
not very sensitive to the changes of derivatives. In 
the two-dimensional function space u - u, C(u, v) 

Figure 5 Searching path of climbing-hill method. 

spccirnen 
CCD 

0 

.' image board 

Figure 6 Experimental setup for DCM. 

demonstrates very good unipeaked characteristic 
(Fig. 4). The correlation function will quickly de- 
crease when u, u move in a direction far away from 
actual displacements. But in the six-dimensional 
function space, there may be some peak values for 

near to each other, then we can get only relative 
maximum values. In a given searching region, we 
can always find the maximum value if we can grad- 
ually reduce the searching step and study the cor- 
relation function values at every displacement and 
its derivative combination. That is the method often 
used before in many papers that is called course and 
fine. This method is very time-consuming and un- 
acceptably long if executed on a personal computer. 

DCM is improved from the view of optimal design 
in this paper. First let u = u = du/dx = du/dy = dv/ 
dy = du/dx = 0, and search in u - u space to find 
the best point; and then keep the value of (u,  u),  
(duldy, d u / d x )  and search the best point in (duldx,  
dv/dy) space, and then keep the value of (u, u) ,  (du/  
dy, du/dx)  and search the (duldx, du/L+y) space. Iterate 
like this until a given precision is reached. During 
every step of searching and iteration, a direct 
searching method, the climbing-hill method, is 
adopted (Fig. 5). Eight directions and eight direction 
points around every given point are studied and the 
direction along which the correlation function gra- 
dient is the greatest is selected and then the follow- 
ing searching is done along this direction. The cal- 
culation work of this method is much less than course 
and fine. Our experiments show that calculation 
speed can be increased 8 times, and it can be run on 
a personal computer. 

The derivative of displacement obtained this way 
is very small relative to displacement, and its pre- 
cision is quite low. So we do not use these derivative 
values directly, but compute derivatives by fitting 
the displacement values. The reason why we con- 

C(U,  U ,  du/dx, du/dy, dv/dy, du/dx), which are very 
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Table I Testing of a Still Object with DCM" 

Testing Correlation 
Points u (pixel) u (pixel) au/ax (%) au/ay (%) au/ax (%) au/ay (%) Function 

(255, 255) 0.003 0.001 0.01 -0.01 0.01 0.01 0.995 

(230, 230) 0.003 0.001 -0.02 0.01 0.02 0.01 0.989 
(320, 300) 0.001 0.002 0.0005 0.01 -0.01 0.01 0.997 

(280, 260) 0.002 0.001 0.01 0.02 0.01 0.02 0.991 

a 30 X 30 subset is used. Image recognition is 1 pixel = 0.05431 mm. 

sider derivative values during searching and iteration 
is to increase correlation function values. 

EXPERIMENTS 

The setup for DCM to measure plane displacement 
and strain is shown in Figure 6. The image card has 
1 MB extended memory, and four 512 X 512 pixels 
images can be stored and visited. The gray level is 
0-255 and the image snapping frequency is 25 images 
per second. A 33-MHz 386 personal computer (with 
math coprocessor) is used. 

The specimen surface is smeared with vitreous 
speckles to be a good diffuse reflection surface. 
Common lamps can be chosen as the light source, 
but our experiments show that the light source in a 
slide projector is better in increasing correlation 
function values. 

To estimate the error of the testing system, we 
photograph several images of the object when it is 
still. Theoretically, displacement and its derivative 
should be zero, but because of some disturbance con- 
ditions such as instability of the light source, electric 
noises of CCD camera etc., the gray level fields of object 
surface may be different in the images and, conse- 

Table I1 
Propellant, Testing Region" 

Tensile Test Result of a Certain 

Time ( s )  t = O  t = 3  t = 6  

1 
2 
3 
4 
5 
6 
Average 
Standard deviation 

0.4594 
0.4612 
0.4663 
0.4725 
0.4688 
0.4636 
0.4638 
0.0055 

0.4886 
0.4860 
0.4775 
0.4915 
0.4803 
0.4869 
0.4862 
0.0051 

0.4779 
0.4728 
0.4811 
0.4692 
0.4714 
0.4672 
0.4745 
0.0053 

a 7.2 X 7.2 mm, 30 X 30 pixel subset is used. Image recognition 
1 pixel = 0.0534188 mm. 

quently, calculated displacement and derivative may 
not be zero. This can be regarded as a deviation of the 
testing system and, according to this, testing results 
can be corrected if necessary (see Table I). 

Compression and tensile experiments are com- 
pleted to test a solid propellant's Poisson's ratio. To 
get the Poisson's ratio a t  a given point, displace- 
ments ui, ui ( i  = 1, 2, . . . , m )  at  every point in the 
row and column passing the given point are mea- 
sured with DCM ( m  is the point number in a selected 
row or column). 

In both transversal and longitudinal directions, 
displacements are fit in the form of polynomials, 
and the derivative at the given point is derived from 
the polynomial. So strains in two directions c,, cr 
are obtained (Fig. 7) .  According to the definition of 
Poisson's ratio, we can get 

E X  
p = - - (loading direction is along y axis) ( 12) 

c> 

8.00 + z 
u 
5 6.00 
u 
d 
-1 
% 4.00 

5 
2.00 

0.00 

-2.00 

COLUMN 

ROW 

150 200 zsa 300 350 

POSITION 

Figure 7 Compression test of a certain propellant: E, 

= 0.0075879, E, = -0.00153955, p = 0.493. 
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In a small region around a point ( 3  X 3 mm’) several 
points are tested. The average of the Poisson’s ratio 
values a t  the chosen points can be taken as the 
Poisson’s ratio of the given point, i.e., 

CONCLUSION 

The setup and experimental conditions required for 
DCM are very simple. For nonmetal, large defor- 
mation problems, DCM can get quite good results. 
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